Cargando…

Nano-Magnesium Silicate Hydroxide/Crumpled Graphene Balls Composites, a Novel Kind of Lubricating Additive with High Performance for Friction and Wear Reduction

In this study, crumpled graphene balls (CGB), a kind of nano-material, was used as an additive to improve the tribological properties of base oil. Nano-magnesium silicate hydroxide (MSH)/CGB composites were prepared by ultrasound-assisted liquid-phase exfoliation. The loading of MSH significantly in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tong, Zhao, Jianguo, Zhang, Jin, Zhang, Shanshan, Li, Jingwei, Li, Shijie, Li, Xinyu, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503855/
https://www.ncbi.nlm.nih.gov/pubmed/32825162
http://dx.doi.org/10.3390/ma13173669
Descripción
Sumario:In this study, crumpled graphene balls (CGB), a kind of nano-material, was used as an additive to improve the tribological properties of base oil. Nano-magnesium silicate hydroxide (MSH)/CGB composites were prepared by ultrasound-assisted liquid-phase exfoliation. The loading of MSH significantly increased the number of pleats and reduced the lamellar thickness of CGB. Then, in order to improve the compatibility with the base oil, the MSH/CGB composites were decorated with oleic acid and stearic acid to get modified lipophilic composites (ML-MSH/CGB). The ML-MSH/CGB were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, the tribological properties of the ML-MSH/CGB in base oils were investigated using a ball-on-disc setup tribometer. It indicated that the fantastic tribological behavior of the ML-MSH/CGB in base oil may contribute to a smaller and extremely wrinkled laminated structure. Furthermore, the base oil with 0.005 wt% ML-MSH/CGB composites exhibited the best anti-friction effect, and its average friction coefficient, wearing capacity and wear scar diameter were reduced by 25.4%, 22.1% and 16.7%, respectively. The introduction of ML-MSH/CGB composed materials is an excellent strategy to optimize the friction performance of lubricating oil.