Cargando…

Hot Deformation Behavior of Cu–Sn–La Polycrystalline Alloy Prepared by Upcasting

In this study, the hot deformation of a Cu–0.55Sn–0.08La (wt.%) alloy was studied using a Gleeble-3180 testing machine at deformation temperatures of 400–700 °C and various strain rates. The stress–strain curve showed that the hot deformation behavior of the Cu–0.55Sn–0.08La (wt.%) alloy was signifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hua, Siming, Zhang, Pingze, Liu, Zili, Yang, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503898/
https://www.ncbi.nlm.nih.gov/pubmed/32847082
http://dx.doi.org/10.3390/ma13173739
Descripción
Sumario:In this study, the hot deformation of a Cu–0.55Sn–0.08La (wt.%) alloy was studied using a Gleeble-3180 testing machine at deformation temperatures of 400–700 °C and various strain rates. The stress–strain curve showed that the hot deformation behavior of the Cu–0.55Sn–0.08La (wt.%) alloy was significantly affected by work hardening, dynamic recovery, and dynamic recrystallization. The activation energy Q was 261.649 kJ·mol(−1) and hot compression constitutive equation was determined as [Formula: see text] The microstructural evolution of the alloy during deformation at 400 °C revealed the presence of both slip and shear bands in the grains. At 700 °C, dynamic recrystallization grains were observed, but recrystallization was incomplete. In summary, these results provide the theoretical basis for the continuous extrusion process of alloys with promising application prospects in the future.