Cargando…

A Simple Approach for Generating Random Aggregate Model of Concrete Based on Laguerre Tessellation and Its Application Analyses

Generating random aggregate models (RAMs) plays a key role in the mesoscopic modelling of concrete-like composite materials. The arbitrary geometry, wide gradation, and high volume ratio of aggregates pose a great challenge for fast and efficient numerical construction of concrete meso-structures. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yutai, He, Jialong, Jiang, Hui, Zhou, Yuande, Jin, Feng, Song, Chongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503920/
https://www.ncbi.nlm.nih.gov/pubmed/32899262
http://dx.doi.org/10.3390/ma13173896
Descripción
Sumario:Generating random aggregate models (RAMs) plays a key role in the mesoscopic modelling of concrete-like composite materials. The arbitrary geometry, wide gradation, and high volume ratio of aggregates pose a great challenge for fast and efficient numerical construction of concrete meso-structures. This paper presents a simple strategy for generating RAMs of concrete based on Laguerre tessellation, which mainly consists of three steps: tessellation, geometric smoothing, and scaling. The computer-assisted design (CAD) file of RAMs obtained by the proposed approach can be directly adopted for the construction of random numerical concrete samples. Combined with the image-based octree meshing algorithm, the scaled boundary finite element method (SBFEM) was adopted for an automatic stress analysis of mass concrete samples, and a parametric study was conducted to investigate the meso-structural effects on concrete elasticity properties. The modelling results successfully reproduced the increasing trend of concrete elastic modulus with the grading of coarse aggregates in literature test data and demonstrate the effectiveness of the proposed strategy.