Cargando…
Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems
Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504087/ https://www.ncbi.nlm.nih.gov/pubmed/32882859 http://dx.doi.org/10.3390/ijms21176339 |
_version_ | 1783584543264997376 |
---|---|
author | Lazim, Raudah Suh, Donghyuk Choi, Sun |
author_facet | Lazim, Raudah Suh, Donghyuk Choi, Sun |
author_sort | Lazim, Raudah |
collection | PubMed |
description | Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited to sieve thermodynamics and kinetics crucial for the elucidation of mechanisms responsible for the modulation of biological processes such as protein-ligand binding and protein-protein association. Continuous modernization of simulation tools enables accurate prediction and characterization of the aforementioned mechanisms and these qualities are highly beneficial for the expedition of drug development when effectively applied to structure-based drug design (SBDD). In this review, current all-atom MD simulation methods, with focus on enhanced sampling techniques, utilized to examine protein structure, dynamics, and functions are discussed. This review will pivot around computer calculations of protein-ligand and protein-protein systems with applications to SBDD. In addition, we will also be highlighting limitations faced by current simulation tools as well as the improvements that have been made to ameliorate their efficiency. |
format | Online Article Text |
id | pubmed-7504087 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75040872020-09-24 Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems Lazim, Raudah Suh, Donghyuk Choi, Sun Int J Mol Sci Review Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited to sieve thermodynamics and kinetics crucial for the elucidation of mechanisms responsible for the modulation of biological processes such as protein-ligand binding and protein-protein association. Continuous modernization of simulation tools enables accurate prediction and characterization of the aforementioned mechanisms and these qualities are highly beneficial for the expedition of drug development when effectively applied to structure-based drug design (SBDD). In this review, current all-atom MD simulation methods, with focus on enhanced sampling techniques, utilized to examine protein structure, dynamics, and functions are discussed. This review will pivot around computer calculations of protein-ligand and protein-protein systems with applications to SBDD. In addition, we will also be highlighting limitations faced by current simulation tools as well as the improvements that have been made to ameliorate their efficiency. MDPI 2020-09-01 /pmc/articles/PMC7504087/ /pubmed/32882859 http://dx.doi.org/10.3390/ijms21176339 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Lazim, Raudah Suh, Donghyuk Choi, Sun Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title | Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title_full | Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title_fullStr | Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title_full_unstemmed | Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title_short | Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems |
title_sort | advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504087/ https://www.ncbi.nlm.nih.gov/pubmed/32882859 http://dx.doi.org/10.3390/ijms21176339 |
work_keys_str_mv | AT lazimraudah advancesinmoleculardynamicssimulationsandenhancedsamplingmethodsforthestudyofproteinsystems AT suhdonghyuk advancesinmoleculardynamicssimulationsandenhancedsamplingmethodsforthestudyofproteinsystems AT choisun advancesinmoleculardynamicssimulationsandenhancedsamplingmethodsforthestudyofproteinsystems |