Cargando…

Structural and Energetic Insights on Two Dye Compounds: 1-Acetyl-2-Naphthol and 2-Acetyl-1-Naphthol

The energy involved in the structural switching of acyl and hydroxyl substituents in the title compounds was evaluated combining experimental and computational studies. Combustion calorimetry and Knudsen effusion techniques were used to determine the enthalpies of formation, in the crystalline state...

Descripción completa

Detalles Bibliográficos
Autores principales: Freitas, Vera L. S., da Silva, Maria D. M. C. Ribeiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504395/
https://www.ncbi.nlm.nih.gov/pubmed/32842699
http://dx.doi.org/10.3390/molecules25173827
Descripción
Sumario:The energy involved in the structural switching of acyl and hydroxyl substituents in the title compounds was evaluated combining experimental and computational studies. Combustion calorimetry and Knudsen effusion techniques were used to determine the enthalpies of formation, in the crystalline state, and of sublimation, respectively. The gas-phase enthalpy of formation of both isomers was derived combining these two experimental data. Concerning the computational study, the G3(MP2)//B3LYP composite method was used to optimize and determine the energy of the isomers in the gaseous state. From a set of hypothetical reactions it has been possible to estimate the gas-phase enthalpy of formation of the title compounds. The good agreement between the experimental and computational gas-phase enthalpies of formation of the 1-acetyl-2-naphthol and 2-acetyl-1-naphthol isomers, provided the confidence for extending the computational study to the 2-acetyl-3-naphthol isomer. The structural rearrangement of the substituents in position 1 and 2 in the naphthalene ring and the energy of the intramolecular hydrogen bond are the factors responsible for the energetic differences exhibited by the isomers. The gas phase tautomeric keto ↔ enol equilibria of the o-acetylnaphthol isomers were analyzed using the Boltzmann’s distribution.