Cargando…

Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development

The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tejchman, Anna, Znój, Agnieszka, Chlebanowska, Paula, Frączek-Szczypta, Aneta, Majka, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504539/
https://www.ncbi.nlm.nih.gov/pubmed/32825046
http://dx.doi.org/10.3390/ijms21175959
Descripción
Sumario:The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons, also found in the human midbrain. However, long-lasting organoid cultures often cause necrosis within organoids. In this work, we present carbon fibers (CFs) for medical use as a new type of scaffold for organoid culture, comparing them to a previously tested copolymer poly-(lactic-co-glycolic acid) (PLGA) scaffold. We verified the physicochemical properties of CF scaffolds compared to PLGA in improving the efficiency of iPSC differentiation within organoids. The physicochemical properties of carbon scaffolds such as porosity, microstructure, or stability in the cellular environment make them a convenient material for creating in vitro organoid models. Through screening several genes expressed during the differentiation of organoids at crucial brain stages of development, we found that there is a correlation between PITX3, one of the key regulators of terminal differentiation, and the survival of midbrain dopaminergic (mDA) neurons and tyrosine hydroxylase (TH) gene expression. This makes organoids formed on carbon scaffolds an improved model containing mDA neurons convenient for studying midbrain-associated neurodegenerative diseases such as Parkinson’s disease.