Cargando…
Establishing the Optimal Density of the Michell Truss Members
Topology optimization is a dynamically developing area of industrial engineering. One of the optimization tasks is to create new part shapes, while maintaining the highest possible stiffness and reliability and minimizing weight. Thanks to computer technology and 3D printers, this path of developmen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504592/ https://www.ncbi.nlm.nih.gov/pubmed/32883038 http://dx.doi.org/10.3390/ma13173867 |
Sumario: | Topology optimization is a dynamically developing area of industrial engineering. One of the optimization tasks is to create new part shapes, while maintaining the highest possible stiffness and reliability and minimizing weight. Thanks to computer technology and 3D printers, this path of development is becoming more and more topical. Two optimization conditions are often used in topology optimization. The first is to achieve the highest possible structure stiffness. The second is to reduce the total weight of the structure. These conditions do not have a direct effect on the number of elements in the resulting structure. This paper proposes a geometric method that modifies topological structures in terms of the number of truss elements but is not based on the optimization conditions. The method is based on natural patterns and further streamlines the optimization strategies used so far. The method’s efficiency is shown on an ideal Michell truss. |
---|