Cargando…

On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-5Al-5Cr-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions

The microstructures and properties of the alloys JZ3 (Nb-12.4Ti-17.7Si-6Ta-2.7W-3.7Sn-4.8Ge-1Hf-4.7Al-5.2Cr) and JZ3+(Nb-12.4Ti-19.7Si-5.7Ta-2.3W-5.7Sn-4.9Ge-0.8Hf-4.6Al-5.2Cr) were studied. The densities of both alloys were lower than the densities of Ni-based superalloys and many of the refractory...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jiang, Utton, Claire, Tsakiropoulos, Panos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504593/
https://www.ncbi.nlm.nih.gov/pubmed/32842708
http://dx.doi.org/10.3390/ma13173719
Descripción
Sumario:The microstructures and properties of the alloys JZ3 (Nb-12.4Ti-17.7Si-6Ta-2.7W-3.7Sn-4.8Ge-1Hf-4.7Al-5.2Cr) and JZ3+(Nb-12.4Ti-19.7Si-5.7Ta-2.3W-5.7Sn-4.9Ge-0.8Hf-4.6Al-5.2Cr) were studied. The densities of both alloys were lower than the densities of Ni-based superalloys and many of the refractory metal complex concentrated alloys (RCCAs) studied to date. Both alloys had Si macrosegregation and the same phases in their as cast and heat treated microstructures, namely βNb(5)Si(3), αNb(5)Si(3), A15-Nb(3)X (X = Al, Ge, Si, Sn), C14-Cr(2)Nb and solid solution. W-rich solid solutions were stable in both alloys. At 800 °C only the alloy JZ3 did not show pest oxidation, and at 1200 °C a thin and well adhering scale formed only on JZ3+. The alloy JZ3+ followed parabolic oxidation with rate constant one order of magnitude higher than the single crystal Ni-superalloy CMSX-4 for the first 14 h of oxidation. The oxidation of both alloys was superior to that of RCCAs. Both alloys were predicted to have better creep at the creep goal condition compared with the superalloy CMSX-4. Calculated Si macrosegregation, solid solution volume fractions, chemical compositions of solid solution and Nb(5)Si(3), weight changes in isothermal oxidation at 800 and 1200 °C using the alloy design methodology NICE agreed well with the experimental results.