Cargando…
Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators
BACKGROUND: The rapid and often uncontrolled rural–urban migration in Sub-Saharan Africa is transforming urban landscapes expected to provide shelter for more than 50% of Africa’s population by 2030. Consequently, the burden of malaria is increasingly affecting the urban population, while socio-econ...
Autores principales: | Georganos, Stefanos, Brousse, Oscar, Dujardin, Sébastien, Linard, Catherine, Casey, Daniel, Milliones, Marco, Parmentier, Benoit, van Lipzig, Nicole P. M., Demuzere, Matthias, Grippa, Tais, Vanhuysse, Sabine, Mboga, Nicholus, Andreo, Verónica, Snow, Robert W., Lennert, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504835/ https://www.ncbi.nlm.nih.gov/pubmed/32958055 http://dx.doi.org/10.1186/s12942-020-00232-2 |
Ejemplares similares
-
Can we use local climate zones for predicting malaria prevalence across sub-Saharan African cities?
por: Brousse, O, et al.
Publicado: (2020) -
Spatial Optimization Methods for Malaria Risk Mapping in Sub‐Saharan African Cities Using Demographic and Health Surveys
por: Morlighem, Camille, et al.
Publicado: (2023) -
Fine-scale mapping of urban malaria exposure under data scarcity: an approach centred on vector ecology
por: Vanhuysse, Sabine, et al.
Publicado: (2023) -
Extending Data for Urban Health Decision-Making: a Menu of New and Potential Neighborhood-Level Health Determinants Datasets in LMICs
por: Thomson, Dana R., et al.
Publicado: (2019) -
Spatial machine learning for predicting physical inactivity prevalence from socioecological determinants in Chicago, Illinois, USA
por: Lotfata, Aynaz, et al.
Publicado: (2023)