Cargando…

In vitro endothelial hyperpermeability occurs early following traumatic hemorrhagic shock

BACKGROUND: Endothelial hyperpermeability is suggested to play a role in the development of microcirculatory perfusion disturbances and organ failure following hemorrhagic shock, but evidence is limited. OBJECTIVE: To study the effect of plasma from traumatic hemorrhagic shock patients on in vitro e...

Descripción completa

Detalles Bibliográficos
Autores principales: van Leeuwen, Anoek L.I., Naumann, David N., Dekker, Nicole A.M., Hordijk, Peter L., Hutchings, Sam D., Boer, Christa, van den Brom, Charissa E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504990/
https://www.ncbi.nlm.nih.gov/pubmed/31929146
http://dx.doi.org/10.3233/CH-190642
Descripción
Sumario:BACKGROUND: Endothelial hyperpermeability is suggested to play a role in the development of microcirculatory perfusion disturbances and organ failure following hemorrhagic shock, but evidence is limited. OBJECTIVE: To study the effect of plasma from traumatic hemorrhagic shock patients on in vitro endothelial barrier function. METHODS: Plasma from traumatic hemorrhagic shock patients was obtained at the emergency department (ED), the intensive care unit (ICU), 24 h after ICU admission and from controls (n = 8). Sublingual microcirculatory perfusion was measured using incident dark field videomicroscopy at matching time points. Using electric cell-substrate impedance sensing, the effects of plasma exposure on in vitro endothelial barrier function of human endothelial cells were assessed. RESULTS: Plasma from traumatic hemorrhagic shock patients collected at ED admission induced a 19% loss of in vitro endothelial resistance compared to plasma from controls (p < 0.001). This loss was due to reduced cell-cell contacts (p < 0.01). Plasma withdrawn at later time points did not affect endothelial barrier function (p > 0.99). Interestingly, in vitro endothelial resistance showed a positive association with in vivo microcirculatory perfusion (r = 0.56, p < 0.01). CONCLUSIONS: Plasma from traumatic hemorrhagic shock patients obtained following ED admission, but not at later stages, induced in vitro endothelial hyperpermeability. This coincided with in vivo microcirculatory perfusion disturbances.