Cargando…

Comparison of central, peripheral, and weighted size-specific dose in CT

The objective of this study is to determine X-ray dose distribution and the correlation between central, peripheral and weighted-centre peripheral doses for various phantom sizes and tube voltages in computed tomography (CT). We used phantoms developed in-house, with various water-equivalent diamete...

Descripción completa

Detalles Bibliográficos
Autores principales: Anam, Choirul, Adhianto, Dwi, Sutanto, Heri, Adi, Kusworo, Ali, Mohd Hanafi, Rae, William Ian Duncombe, Fujibuchi, Toshioh, Dougherty, Geoff
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505003/
https://www.ncbi.nlm.nih.gov/pubmed/32773401
http://dx.doi.org/10.3233/XST-200667
Descripción
Sumario:The objective of this study is to determine X-ray dose distribution and the correlation between central, peripheral and weighted-centre peripheral doses for various phantom sizes and tube voltages in computed tomography (CT). We used phantoms developed in-house, with various water-equivalent diameters (Dw) from 8.5 up to 42.1 cm. The phantoms have one hole in the centre and four holes at the periphery. By using these five holes, it is possible to measure the size-specific central dose (Ds,c), peripheral dose (Ds,p), and weighted dose (Ds,w).The phantoms are scanned using a CT scanner (Siemens Somatom Definition AS), with the tube voltage varied from 80 up to 140 kVps. The doses are measured using a pencil ionization chamber (Ray safe X2 CT Sensor) in every hole for all phantoms. The relationships between Ds,c, Ds,p, and Ds,w, and the water-equivalent diameter are established. The size-conversion factors are calculated. Comparisons between Ds,c, Ds,p, and Ds,ware also established. We observe that the dose is relatively homogeneous over the phantom for water-equivalent diameters of 12–14 cm. For water-equivalent diameters less than 12 cm, the dose in the centre is higher than at the periphery, whereas for water-equivalent diameters greater than 14 cm, the dose at the centre is lower than that at the periphery. We also find that the distribution of the doses is influenced by the tube voltage. These dose distributions may be useful for calculating organ doses for specific patients using their CT images in future clinical practice.