Cargando…
Forecasting emergency department overcrowding: A deep learning framework
As the demand for medical cares has considerably expanded, the issue of managing patient flow in hospitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. This can lead to overcrowding and the degradation of the quality of the provided medical servic...
Autores principales: | Harrou, Fouzi, Dairi, Abdelkader, Kadri, Farid, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505132/ https://www.ncbi.nlm.nih.gov/pubmed/32982079 http://dx.doi.org/10.1016/j.chaos.2020.110247 |
Ejemplares similares
-
Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework
por: Kadri, Farid, et al.
Publicado: (2022) -
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
Comparative study of machine learning methods for COVID-19 transmission forecasting
por: Dairi, Abdelkader, et al.
Publicado: (2021) -
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
por: Dairi, Abdelkader, et al.
Publicado: (2022) -
Semi-Supervised KPCA-Based Monitoring Techniques for Detecting COVID-19 Infection through Blood Tests
por: Harrou, Fouzi, et al.
Publicado: (2023)