Cargando…
Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States
BACKGROUND: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 600,000 lives worldwide, causing tremendous public health, social, and economic damages. Although the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollut...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505160/ https://www.ncbi.nlm.nih.gov/pubmed/32984861 http://dx.doi.org/10.1016/j.xinn.2020.100047 |
_version_ | 1783584760289820672 |
---|---|
author | Liang, Donghai Shi, Liuhua Zhao, Jingxuan Liu, Pengfei Sarnat, Jeremy A. Gao, Song Schwartz, Joel Liu, Yang Ebelt, Stefanie T. Scovronick, Noah Chang, Howard H. |
author_facet | Liang, Donghai Shi, Liuhua Zhao, Jingxuan Liu, Pengfei Sarnat, Jeremy A. Gao, Song Schwartz, Joel Liu, Yang Ebelt, Stefanie T. Scovronick, Noah Chang, Howard H. |
author_sort | Liang, Donghai |
collection | PubMed |
description | BACKGROUND: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 600,000 lives worldwide, causing tremendous public health, social, and economic damages. Although the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution, may play an important role in increasing population susceptibility to COVID-19 pathogenesis. METHODS: We conducted a cross-sectional nationwide study using zero-inflated negative binomial models to estimate the association between long-term (2010–2016) county-level exposures to NO(2), PM(2.5), and O(3) and county-level COVID-19 case-fatality and mortality rates in the United States. We used both single- and multi-pollutant models and controlled for spatial trends and a comprehensive set of potential confounders, including state-level test positive rate, county-level health care capacity, phase of epidemic, population mobility, population density, sociodemographics, socioeconomic status, race and ethnicity, behavioral risk factors, and meteorology. RESULTS: From January 22, 2020, to July 17, 2020, 3,659,828 COVID-19 cases and 138,552 deaths were reported in 3,076 US counties, with an overall observed case-fatality rate of 3.8%. County-level average NO(2) concentrations were positively associated with both COVID-19 case-fatality rate and mortality rate in single-, bi-, and tri-pollutant models. When adjusted for co-pollutants, per interquartile-range (IQR) increase in NO(2) (4.6 ppb), COVID-19 case-fatality rate and mortality rate were associated with an increase of 11.3% (95% CI 4.9%–18.2%) and 16.2% (95% CI 8.7%–24.0%), respectively. We did not observe significant associations between COVID-19 case-fatality rate and long-term exposure to PM(2.5) or O(3), although per IQR increase in PM(2.5) (2.6 μg/m(3)) was marginally associated, with a 14.9% (95% CI 0.0%–31.9%) increase in COVID-19 mortality rate when adjusted for co-pollutants. DISCUSSION: Long-term exposure to NO(2), which largely arises from urban combustion sources such as traffic, may enhance susceptibility to severe COVID-19 outcomes, independent of long-term PM(2.5) and O(3) exposure. The results support targeted public health actions to protect residents from COVID-19 in heavily polluted regions with historically high NO(2) levels. Continuation of current efforts to lower traffic emissions and ambient air pollution may be an important component of reducing population-level risk of COVID-19 case fatality and mortality. |
format | Online Article Text |
id | pubmed-7505160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75051602020-09-23 Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States Liang, Donghai Shi, Liuhua Zhao, Jingxuan Liu, Pengfei Sarnat, Jeremy A. Gao, Song Schwartz, Joel Liu, Yang Ebelt, Stefanie T. Scovronick, Noah Chang, Howard H. Innovation (Camb) Article BACKGROUND: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 600,000 lives worldwide, causing tremendous public health, social, and economic damages. Although the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution, may play an important role in increasing population susceptibility to COVID-19 pathogenesis. METHODS: We conducted a cross-sectional nationwide study using zero-inflated negative binomial models to estimate the association between long-term (2010–2016) county-level exposures to NO(2), PM(2.5), and O(3) and county-level COVID-19 case-fatality and mortality rates in the United States. We used both single- and multi-pollutant models and controlled for spatial trends and a comprehensive set of potential confounders, including state-level test positive rate, county-level health care capacity, phase of epidemic, population mobility, population density, sociodemographics, socioeconomic status, race and ethnicity, behavioral risk factors, and meteorology. RESULTS: From January 22, 2020, to July 17, 2020, 3,659,828 COVID-19 cases and 138,552 deaths were reported in 3,076 US counties, with an overall observed case-fatality rate of 3.8%. County-level average NO(2) concentrations were positively associated with both COVID-19 case-fatality rate and mortality rate in single-, bi-, and tri-pollutant models. When adjusted for co-pollutants, per interquartile-range (IQR) increase in NO(2) (4.6 ppb), COVID-19 case-fatality rate and mortality rate were associated with an increase of 11.3% (95% CI 4.9%–18.2%) and 16.2% (95% CI 8.7%–24.0%), respectively. We did not observe significant associations between COVID-19 case-fatality rate and long-term exposure to PM(2.5) or O(3), although per IQR increase in PM(2.5) (2.6 μg/m(3)) was marginally associated, with a 14.9% (95% CI 0.0%–31.9%) increase in COVID-19 mortality rate when adjusted for co-pollutants. DISCUSSION: Long-term exposure to NO(2), which largely arises from urban combustion sources such as traffic, may enhance susceptibility to severe COVID-19 outcomes, independent of long-term PM(2.5) and O(3) exposure. The results support targeted public health actions to protect residents from COVID-19 in heavily polluted regions with historically high NO(2) levels. Continuation of current efforts to lower traffic emissions and ambient air pollution may be an important component of reducing population-level risk of COVID-19 case fatality and mortality. Elsevier 2020-09-21 /pmc/articles/PMC7505160/ /pubmed/32984861 http://dx.doi.org/10.1016/j.xinn.2020.100047 Text en © 2020 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liang, Donghai Shi, Liuhua Zhao, Jingxuan Liu, Pengfei Sarnat, Jeremy A. Gao, Song Schwartz, Joel Liu, Yang Ebelt, Stefanie T. Scovronick, Noah Chang, Howard H. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title | Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title_full | Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title_fullStr | Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title_full_unstemmed | Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title_short | Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States |
title_sort | urban air pollution may enhance covid-19 case-fatality and mortality rates in the united states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505160/ https://www.ncbi.nlm.nih.gov/pubmed/32984861 http://dx.doi.org/10.1016/j.xinn.2020.100047 |
work_keys_str_mv | AT liangdonghai urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT shiliuhua urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT zhaojingxuan urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT liupengfei urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT sarnatjeremya urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT gaosong urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT schwartzjoel urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT liuyang urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT ebeltstefaniet urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT scovronicknoah urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates AT changhowardh urbanairpollutionmayenhancecovid19casefatalityandmortalityratesintheunitedstates |