Cargando…
Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations
Many cognitive and behavioral tasks—such as interval timing, spatial navigation, motor control, and speech—require the execution of precisely-timed sequences of neural activation that cannot be fully explained by a succession of external stimuli. We show how repeatable and reliable patterns of spati...
Autores principales: | Vincent-Lamarre, Philippe, Calderini, Matias, Thivierge, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505196/ https://www.ncbi.nlm.nih.gov/pubmed/33013342 http://dx.doi.org/10.3389/fncom.2020.00078 |
Ejemplares similares
-
Structured chaos shapes spike-response noise entropy in balanced neural networks
por: Lajoie, Guillaume, et al.
Publicado: (2014) -
Extracting functionally feedforward networks from a population of spiking neurons
por: Vincent, Kathleen, et al.
Publicado: (2012) -
Estimating Fisher discriminant error in a linear integrator model of neural population activity
por: Calderini, Matias, et al.
Publicado: (2021) -
Extreme sensitivity of reservoir computing to small network disruptions
por: Vincent-Lamarre, Philippe, et al.
Publicado: (2015) -
Structured chaos shapes joint spike-response noise entropy in temporally driven balanced networks
por: Lajoie, Guillaume, et al.
Publicado: (2014)