Cargando…
COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging become...
Autores principales: | Zhang, Ruochi, Guo, Zhehao, Sun, Yue, Lu, Qi, Xu, Zijian, Yao, Zhaomin, Duan, Meiyu, Liu, Shuai, Ren, Yanjiao, Huang, Lan, Zhou, Fengfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505483/ https://www.ncbi.nlm.nih.gov/pubmed/32959234 http://dx.doi.org/10.1007/s12539-020-00393-5 |
Ejemplares similares
-
Artificial intelligence on COVID-19 pneumonia detection using chest xray images
por: Baltazar, Lei Rigi, et al.
Publicado: (2021) -
CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR
por: Monshi, Maram Mahmoud A., et al.
Publicado: (2021) -
Modern Xray analysis III: energy dispersive analysis of Xrays and the electron microscope
por: EDAX International
Publicado: (1975) -
Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning
por: Hashmi, Mohammad Farukh, et al.
Publicado: (2020) -
Start-to-End Simulation for the LCLS Xray-FEL
por: Reiche, S, et al.
Publicado: (2001)