Cargando…
PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images
The COVID-19 pandemic continues to severely undermine the prosperity of the global health system. To combat this pandemic, effective screening techniques for infected patients are indispensable. There is no doubt that the use of chest X-ray images for radiological assessment is one of the essential...
Autores principales: | Chowdhury, Nihad K., Rahman, Md. Muhtadir, Kabir, Muhammad Ashad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505500/ https://www.ncbi.nlm.nih.gov/pubmed/32983419 http://dx.doi.org/10.1007/s13755-020-00119-3 |
Ejemplares similares
-
ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19
por: Chowdhury, Nihad Karim, et al.
Publicado: (2021) -
Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method
por: Chowdhury, Nihad Karim, et al.
Publicado: (2022) -
A Convolutional Neural Network Architecture for Segmentation of Lung Diseases Using Chest X-ray Images
por: Sulaiman, Adel, et al.
Publicado: (2023) -
DDCNNC: Dilated and depthwise separable convolutional neural Network for diagnosis COVID-19 via chest X-ray images
por: Li, Xiang, et al.
Publicado: (2021) -
A light-weight convolutional Neural Network Architecture for classification of COVID-19 chest X-Ray images
por: Masud, Mehedi
Publicado: (2022)