Cargando…
Rapid functional traits turnover in boreal dragonfly communities (Odonata)
All natural populations show fluctuations in space or time. This is fundamental for the maintenance of biodiversity, as it allows species to coexist. Long-term ecological studies are rare, mainly due to logistics, but studies like the one presented below recognize the dimensionality of temporal chan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505836/ https://www.ncbi.nlm.nih.gov/pubmed/32958844 http://dx.doi.org/10.1038/s41598-020-71685-5 |
Sumario: | All natural populations show fluctuations in space or time. This is fundamental for the maintenance of biodiversity, as it allows species to coexist. Long-term ecological studies are rare, mainly due to logistics, but studies like the one presented below recognize the dimensionality of temporal change and the ecological processes that lead to shifts in community composition over time. Here, we used three sampling occasions from a dataset spanning 20 years where dragonflies in central Sweden were monitored. Our aim was to investigate how the prevalence of ecological and biological species traits varied over time measured as Community-level Weighted Means of trait values (CWM). Most CWM values varied significantly between years. Most of the traits changed between the second and the last sampling occasion, but not between the two first ones. These changes could be linked to major changes in species abundance. Our work indicates that fundamental shifts in community structure can occur over a short time, providing environmental drivers act on species turnover. In our case, Climate change and pH levels in lakes are most likely the most important factors. |
---|