Cargando…
Improving Prediction of Favourable Outcome After 6 Months in Patients with Severe Traumatic Brain Injury Using Physiological Cerebral Parameters in a Multivariable Logistic Regression Model
BACKGROUND/OBJECTIVE: Current severe traumatic brain injury (TBI) outcome prediction models calculate the chance of unfavourable outcome after 6 months based on parameters measured at admission. We aimed to improve current models with the addition of continuously measured neuromonitoring data within...
Autores principales: | Bennis, Frank C., Teeuwen, Bibi, Zeiler, Frederick A., Elting, Jan Willem, van der Naalt, Joukje, Bonizzi, Pietro, Delhaas, Tammo, Aries, Marcel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505885/ https://www.ncbi.nlm.nih.gov/pubmed/32056131 http://dx.doi.org/10.1007/s12028-020-00930-6 |
Ejemplares similares
-
Improper Reporting of Multivariable Logistic Regression
por: Kumar, Rajeev
Publicado: (2014) -
Observations on the Cerebral Effects of Refractory Intracranial Hypertension After Severe Traumatic Brain Injury
por: Donnelly, Joseph, et al.
Publicado: (2019) -
Cerebrovascular Autoregulation Monitoring in the Management of Adult Severe Traumatic Brain Injury: A Delphi Consensus of Clinicians
por: Depreitere, B., et al.
Publicado: (2021) -
Errors in the use of Multivariable Logistic Regression Analysis: An Empirical Analysis
por: Malhotra, Rajeev Kumar
Publicado: (2020) -
Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals
por: Zhang, Ying-ying, et al.
Publicado: (2017)