Cargando…
Convolutional neural networks for improving image quality with noisy PET data
GOAL: PET is a relatively noisy process compared to other imaging modalities, and sparsity of acquisition data leads to noise in the images. Recent work has focused on machine learning techniques to improve PET images, and this study investigates a deep learning approach to improve the quality of re...
Autores principales: | Schaefferkoetter, Josh, Yan, Jianhua, Ortega, Claudia, Sertic, Andrew, Lechtman, Eli, Eshet, Yael, Metser, Ur, Veit-Haibach, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505915/ https://www.ncbi.nlm.nih.gov/pubmed/32955669 http://dx.doi.org/10.1186/s13550-020-00695-1 |
Ejemplares similares
-
Combination of FDG PET/CT Radiomics and Clinical Parameters for Outcome Prediction in Patients with Hodgkin’s Lymphoma
por: Ortega, Claudia, et al.
Publicado: (2023) -
Standardized classification schemes in reporting oncologic PET/CT
por: Murad, Vanessa, et al.
Publicado: (2023) -
Corrigendum: Standardized classification schemes in reporting oncologic PET/CT
por: Murad, Vanessa, et al.
Publicado: (2023) -
(18)F-DCFPyL (PSMA) PET in the Management of Men with Biochemical Failure after Primary Therapy: Initial Clinical Experience of an Academic Cancer Center
por: Metser, Ur, et al.
Publicado: (2021) -
Impact of the COVID-19 Pandemic on Staging Oncologic PET/CT Imaging and Patient Outcome in a Public Healthcare Context: Overview and Follow Up of the First Two Years of the Pandemic
por: Kohan, Andres, et al.
Publicado: (2023)