Cargando…
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
In this study, a square cavity is modeled using Computational Fluid Dynamics (CFD) as well as artificial intelligence (AI) approach. In the square cavity, copper (Cu) nanoparticle is the nanofluid and the flow velocity characteristics in the x-direction and y-direction, and the fluid temperature ins...
Autores principales: | Pishnamazi, Mahboubeh, Babanezhad, Meisam, Nakhjiri, Ali Taghvaie, Rezakazemi, Mashallah, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505986/ https://www.ncbi.nlm.nih.gov/pubmed/32958774 http://dx.doi.org/10.1038/s41598-020-72182-5 |
Ejemplares similares
-
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Changes in the Number of Membership Functions for
Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition
Clustering of the ANFIS Method
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Babanezhad, Meisam, et al.
Publicado: (2021)