Cargando…

An unusual type I ribosome-inactivating protein from Agrostemma githago L.

Agrostemma githago L. (corn cockle) is an herbaceous plant mainly growing in Europe. The seeds of the corn cockle are toxic and poisonings were widespread in the past by consuming contaminated flour. The toxic principle of Agrostemma seeds was attributed to triterpenoid secondary metabolites. Indeed...

Descripción completa

Detalles Bibliográficos
Autores principales: Weise, Christoph, Schrot, Achim, Wuerger, Leonie T. D., Adolf, Jacob, Gilabert-Oriol, Roger, Sama, Simko, Melzig, Matthias F., Weng, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506001/
https://www.ncbi.nlm.nih.gov/pubmed/32958800
http://dx.doi.org/10.1038/s41598-020-72282-2
Descripción
Sumario:Agrostemma githago L. (corn cockle) is an herbaceous plant mainly growing in Europe. The seeds of the corn cockle are toxic and poisonings were widespread in the past by consuming contaminated flour. The toxic principle of Agrostemma seeds was attributed to triterpenoid secondary metabolites. Indeed, this is in part true. However Agrostemma githago L. is also a producer of ribosome-inactivating proteins (RIPs). RIPs are N-glycosylases that inactivate the ribosomal RNA, a process leading to an irreversible inhibition of protein synthesis and subsequent cell death. A widely known RIP is ricin from Ricinus communis L., which was used as a bioweapon in the past. In this study we isolated agrostin, a 27 kDa RIP from the seeds of Agrostemma githago L., and determined its full sequence. The toxicity of native agrostin was investigated by impedance-based live cell imaging. By RNAseq we identified 7 additional RIPs (agrostins) in the transcriptome of the corn cockle. Agrostin was recombinantly expressed in E. coli and characterized by MALDI-TOF–MS and adenine releasing assay. This study provides for the first time a comprehensive analysis of ribosome-inactivating proteins in the corn cockle and complements the current knowledge about the toxic principles of the plant.