Cargando…

Fundamental dissipation due to bound fermions in the zero-temperature limit

The ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid (3)He the role of boun...

Descripción completa

Detalles Bibliográficos
Autores principales: Autti, S., Ahlstrom, S. L., Haley, R. P., Jennings, A., Pickett, G. R., Poole, M., Schanen, R., Soldatov, A. A., Tsepelin, V., Vonka, J., Wilcox, T., Woods, A. J., Zmeev, D. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506006/
https://www.ncbi.nlm.nih.gov/pubmed/32958764
http://dx.doi.org/10.1038/s41467-020-18499-1
Descripción
Sumario:The ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid (3)He the role of bound states is more subtle: when a macroscopic object moves in the superfluid at velocities exceeding the Landau critical velocity, little to no bulk pair breaking takes place, while the damping observed originates from the bound states covering the moving object. We identify two separate timescales that govern the bound state dynamics, one of them much longer than theoretically anticipated, and show that the bound states do not interact with bulk excitations.