Cargando…
Generation of Virtual Non-Contrast CT From Intravenous Enhanced CT in Radiotherapy Using Convolutional Neural Networks
Objective: To generate virtual non-contrast (VNC) computed tomography (CT) from intravenous enhanced CT through convolutional neural networks (CNN) and compare calculated dose among enhanced CT, VNC, and real non-contrast scanning. Method: 50 patients who accepted non-contrast and enhanced CT scanni...
Autores principales: | Liugang, Gao, Kai, Xie, Chunying, Li, Zhengda, Lu, Jianfeng, Sui, Tao, Lin, Xinye, Ni, Jianrong, Dai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506124/ https://www.ncbi.nlm.nih.gov/pubmed/33014850 http://dx.doi.org/10.3389/fonc.2020.01715 |
Ejemplares similares
-
Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy
por: Gao, Liugang, et al.
Publicado: (2021) -
Imaging Study of Pseudo-CT Synthesized From Cone-Beam CT Based on 3D CycleGAN in Radiotherapy
por: Sun, Hongfei, et al.
Publicado: (2021) -
Research on pseudo-CT imaging technique based on an ultrasound deformation field with binary mask in radiotherapy
por: Sun, Hongfei, et al.
Publicado: (2018) -
Augmented reality‐guided positioning system for radiotherapy patients
por: Li, Chunying, et al.
Publicado: (2022) -
Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
por: Lin, Tao, et al.
Publicado: (2019)