Cargando…
COVID-19 image classification using deep features and fractional-order marine predators algorithm
Currently, we witness the severe spread of the pandemic of the new Corona virus, COVID-19, which causes dangerous symptoms to humans and animals, its complications may lead to death. Although convolutional neural networks (CNNs) is considered the current state-of-the-art image classification techniq...
Autores principales: | Sahlol, Ahmed T., Yousri, Dalia, Ewees, Ahmed A., Al-qaness, Mohammed A. A., Damasevicius, Robertas, Elaziz, Mohamed Abd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506559/ https://www.ncbi.nlm.nih.gov/pubmed/32958781 http://dx.doi.org/10.1038/s41598-020-71294-2 |
Ejemplares similares
-
COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions
por: Yousri, Dalia, et al.
Publicado: (2021) -
Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2020) -
An Electric Fish-Based Arithmetic Optimization Algorithm for Feature Selection
por: Ibrahim, Rehab Ali, et al.
Publicado: (2021) -
Enhanced feature selection technique using slime mould algorithm: a case study on chemical data
por: Ewees, Ahmed A., et al.
Publicado: (2022) -
Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features
por: Sahlol, Ahmed T., et al.
Publicado: (2020)