Cargando…

Improving Congestion Control of TCP for Constrained IoT Networks

For smooth integration with middleboxes on the Internet, TCP (Transmission Control Protocol) is favorably considered as a transport-layer protocol for IoT (Internet of Things) networks. In constrained networks, TCP tends to perform well with a small window size. For example, the uIP (micro IP) TCP/I...

Descripción completa

Detalles Bibliográficos
Autor principal: Lim, Chansook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506571/
https://www.ncbi.nlm.nih.gov/pubmed/32846962
http://dx.doi.org/10.3390/s20174774
Descripción
Sumario:For smooth integration with middleboxes on the Internet, TCP (Transmission Control Protocol) is favorably considered as a transport-layer protocol for IoT (Internet of Things) networks. In constrained networks, TCP tends to perform well with a small window size. For example, the uIP (micro IP) TCP/IP stack sets the TCP window size to one segment by default. In such a case, managing the retransmission timer is a primary approach to congestion control. In this paper, we examine the congestion control mechanism of TCP in the uIP stack using grid topology networks. In the preliminary test using the Cooja network simulator, the results show that the original uIP TCP causes lots of retransmissions when a radio duty cycling mechanism such as ContikiMAC is used. One main reason is that, once retransmission is deemed to be necessary, the original uIP TCP sets the retransmission timer based on the fixed RTO (retransmission timeout) before performing a retransmission. Since ContikiMAC may cause large RTT (round-trip time) variations due to the hidden terminal problem, the retransmission timer based on the fixed RTO value may cause lots of retransmissions. To address the problem, we propose a new scheme for managing the retransmission timer which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Simulation results show that our proposed scheme reduces retransmissions while enhancing throughput and fairness when an RDC (radio duty cycling) mechanism is used.