Cargando…
A Hierarchical Learning Approach for Human Action Recognition
In the domain of human action recognition, existing works mainly focus on using RGB, depth, skeleton and infrared data for analysis. While these methods have the benefit of being non-invasive, they can only be used within limited setups, are prone to issues such as occlusion and often need substanti...
Autores principales: | Lemieux, Nicolas, Noumeir, Rita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506581/ https://www.ncbi.nlm.nih.gov/pubmed/32882894 http://dx.doi.org/10.3390/s20174946 |
Ejemplares similares
-
Active Learning of the HL7 Medical Standard
por: Noumeir, Rita
Publicado: (2018) -
Complex Human Action Recognition Using a Hierarchical Feature Reduction and Deep Learning-Based Method
por: Serpush, Fatemeh, et al.
Publicado: (2021) -
Online recognition of unsegmented actions with hierarchical SOM architecture
por: Gharaee, Zahra
Publicado: (2020) -
Deep Learning-Based Real-Time Multiple-Person Action Recognition System
por: Tsai, Jen-Kai, et al.
Publicado: (2020) -
Model-based hierarchical reinforcement learning and human action control
por: Botvinick, Matthew, et al.
Publicado: (2014)