Cargando…
Multi-Sensor Data Fusion for Remaining Useful Life Prediction of Machining Tools by IABC-BPNN in Dry Milling Operations
Inefficient remaining useful life (RUL) estimation may cause unpredictable failures and unscheduled maintenance of machining tools. Multi-sensor data fusion will improve the RUL prediction reliability by fusing more sensor information related to the machining process of tools. In this paper, a multi...
Autores principales: | Liu, Min, Yao, Xifan, Zhang, Jianming, Chen, Wocheng, Jing, Xuan, Wang, Kesai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506589/ https://www.ncbi.nlm.nih.gov/pubmed/32824889 http://dx.doi.org/10.3390/s20174657 |
Ejemplares similares
-
Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations
por: Zhang, Cunji, et al.
Publicado: (2016) -
Quality Grading of River Crabs Based on Machine Vision and GA-BPNN
por: Wang, Han, et al.
Publicado: (2023) -
Special Issue of the 1st International Applied Bioinformatics Conference (iABC'21)
por: Allmer, Jens, et al.
Publicado: (2021) -
The IABC Handbook of Organizational Communication: A Guide to Internal Communication, Public Relations, Marketing, and Leadership
por: Gillis, Tamara
Publicado: (2011) -
A Dual-Stage Attention Model for Tool Wear Prediction in Dry Milling Operation
por: Qin, Yongrui, et al.
Publicado: (2022)