Cargando…
HROM: Learning High-Resolution Representation and Object-Aware Masks for Visual Object Tracking
Siamese network-based trackers consider tracking as features cross-correlation between the target template and the search region. Therefore, feature representation plays an important role for constructing a high-performance tracker. However, all existing Siamese networks extract the deep but low-res...
Autores principales: | Zhang, Dawei, Zheng, Zhonglong, Wang, Tianxiang, He, Yiran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506602/ https://www.ncbi.nlm.nih.gov/pubmed/32858872 http://dx.doi.org/10.3390/s20174807 |
Ejemplares similares
-
Visual Learning in Multiple-Object Tracking
por: Makovski, Tal, et al.
Publicado: (2008) -
Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning
por: Zhang, Dawei, et al.
Publicado: (2022) -
Visual Object Tracking Using Structured Sparse PCA-Based Appearance Representation and Online Learning
por: Yoon, Gang-Joon, et al.
Publicado: (2018) -
Learning Soft Mask Based Feature Fusion with Channel and Spatial Attention for Robust Visual Object Tracking
por: Fiaz, Mustansar, et al.
Publicado: (2020) -
Learning Enhanced Feature Responses for Visual Object Tracking
por: Zhang, Runqing, et al.
Publicado: (2022)