Cargando…
A Deep-Learning Method for Radar Micro-Doppler Spectrogram Restoration
Radio frequency interference, which makes it difficult to produce high-quality radar spectrograms, is a major issue for micro-Doppler-based human activity recognition (HAR). In this paper, we propose a deep-learning-based method to detect and cut out the interference in spectrograms. Then, we restor...
Autores principales: | He, Yuan, Li, Xinyu, Li, Runlong, Wang, Jianping, Jing, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506618/ https://www.ncbi.nlm.nih.gov/pubmed/32899348 http://dx.doi.org/10.3390/s20175007 |
Ejemplares similares
-
Power Equipment Fault Diagnosis Method Based on Energy Spectrogram and Deep Learning
por: Liu, Yiyang, et al.
Publicado: (2022) -
A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram
por: Li, Chengfan, et al.
Publicado: (2022) -
The micro-Doppler effect in radar
por: Chen, Victor C
Publicado: (2019) -
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
Micro-Doppler radar and its applications
por: Fioranelli, Francesco, et al.
Publicado: (2020)