Cargando…
Low Dimensional Discriminative Representation of Fully Connected Layer Features Using Extended LargeVis Method for High-Resolution Remote Sensing Image Retrieval
Recently, there have been rapid advances in high-resolution remote sensing image retrieval, which plays an important role in remote sensing data management and utilization. For content-based remote sensing image retrieval, low-dimensional, representative and discriminative features are essential to...
Autores principales: | Zhuo, Zheng, Zhou, Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506632/ https://www.ncbi.nlm.nih.gov/pubmed/32825587 http://dx.doi.org/10.3390/s20174718 |
Ejemplares similares
-
Software Tool for Soil Surface Parameters Retrieval from Fully Polarimetric Remotely Sensed SAR Data
por: Poreh, Davod, et al.
Publicado: (2020) -
Spectral pruning of fully connected layers
por: Buffoni, Lorenzo, et al.
Publicado: (2022) -
Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
por: Zhou, Guohua, et al.
Publicado: (2022) -
SR-FEINR: Continuous Remote Sensing Image Super-Resolution Using Feature-Enhanced Implicit Neural Representation
por: Luo, Jinming, et al.
Publicado: (2023) -
Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability
por: Schmidt, Markus A., et al.
Publicado: (2012)