Cargando…
Dynamic Camera Reconfiguration with Reinforcement Learning and Stochastic Methods for Crowd Surveillance †
Crowd surveillance plays a key role to ensure safety and security in public areas. Surveillance systems traditionally rely on fixed camera networks, which suffer from limitations, as coverage of the monitored area, video resolution and analytic performance. On the other hand, a smart camera network...
Autores principales: | Bisagno, Niccolò, Xamin, Alberto, De Natale, Francesco, Conci, Nicola, Rinner, Bernhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506634/ https://www.ncbi.nlm.nih.gov/pubmed/32825261 http://dx.doi.org/10.3390/s20174691 |
Ejemplares similares
-
A Social Distance Estimation and Crowd Monitoring System for Surveillance Cameras
por: Al-Sa’d, Mohammad, et al.
Publicado: (2022) -
Crowd dynamics
por: Gibelli, Livio, et al.
Publicado: (2018) -
Cognitive Cameras on the Edge for Crowd Physical Distancing Monitoring in the Covid-19 Era
por: Raimondo, Francesco, et al.
Publicado: (2023) -
Secure Smart Cameras by Aggregate-Signcryption with Decryption Fairness for Multi-Receiver IoT Applications
por: Ullah, Subhan, et al.
Publicado: (2019) -
A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications
por: Fu, Bo, et al.
Publicado: (2011)