Cargando…
Gait Activity Classification on Unbalanced Data from Inertial Sensors Using Shallow and Deep Learning
Activity recognition is one of the most active areas of research in ubiquitous computing. In particular, gait activity recognition is useful to identify various risk factors in people’s health that are directly related to their physical activity. One of the issues in activity recognition, and gait i...
Autores principales: | Lopez-Nava, Irvin Hussein, Valentín-Coronado, Luis M., Garcia-Constantino, Matias, Favela, Jesus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506657/ https://www.ncbi.nlm.nih.gov/pubmed/32842459 http://dx.doi.org/10.3390/s20174756 |
Ejemplares similares
-
Towards Wearable-Inertial-Sensor-Based Gait Posture Evaluation for Subjects with Unbalanced Gaits
por: Qiu, Sen, et al.
Publicado: (2020) -
Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning
por: Garibaldi-Márquez, Francisco, et al.
Publicado: (2022) -
Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors
por: Shi, Ling-Feng, et al.
Publicado: (2023) -
Inertial Sensor-Based Smoother for Gait Analysis
por: Suh, Young Soo
Publicado: (2014) -
Validation of Inertial Sensors to Evaluate Gait Stability
por: Riek, Paul M., et al.
Publicado: (2023)