Cargando…
Evaluation of Hemodialysis Arteriovenous Bruit by Deep Learning
Physical findings of auscultation cannot be quantified at the arteriovenous fistula examination site during daily dialysis treatment. Consequently, minute changes over time cannot be recorded based only on subjective observations. In this study, we sought to supplement the daily arteriovenous fistul...
Autores principales: | Ota, Keisuke, Nishiura, Yousuke, Ishihara, Saki, Adachi, Hihoko, Yamamoto, Takehisa, Hamano, Takayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506665/ https://www.ncbi.nlm.nih.gov/pubmed/32867220 http://dx.doi.org/10.3390/s20174852 |
Ejemplares similares
-
Flank bruits due to giant renal arteriovenous malformation
por: Wu, Fu-Zong, et al.
Publicado: (2010) -
Le bruit
por: World Health Organization. Geneva
Publicado: (1980) -
Noise Training - ’Bruit – Connaître les risques liés au bruit‘
por: DGS Unit
Publicado: (2010) -
The "Bruit De Roger."
por: Cowan, John, et al.
Publicado: (1909) -
Deep learning to classify arteriovenous access aneurysms in hemodialysis patients
por: Zhang, Hanjie, et al.
Publicado: (2021)