Cargando…
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD
Agricultural greenhouses (AGs) are an important facility for the development of modern agriculture. Accurately and effectively detecting AGs is a necessity for the strategic planning of modern agriculture. With the advent of deep learning algorithms, various convolutional neural network (CNN)-based...
Autores principales: | Li, Min, Zhang, Zhijie, Lei, Liping, Wang, Xiaofan, Guo, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506698/ https://www.ncbi.nlm.nih.gov/pubmed/32878345 http://dx.doi.org/10.3390/s20174938 |
Ejemplares similares
-
SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities
por: Morera, Ángel, et al.
Publicado: (2020) -
Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification
por: Tan, Lu, et al.
Publicado: (2021) -
Sea Mine Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models
por: Munteanu, Dan, et al.
Publicado: (2022) -
Automated liver tumor detection in abdominal ultrasonography with a modified faster region-based convolutional neural networks (Faster R-CNN) architecture
por: Karako, Kenji, et al.
Publicado: (2022) -
Deep Convolutional Neural Network for Mapping Smallholder Agriculture Using High Spatial Resolution Satellite Image
por: Xie, Bin, et al.
Publicado: (2019)