Cargando…
Fusion of Environmental Sensing on PM(2.5) and Deep Learning on Vehicle Detecting for Acquiring Roadside PM(2.5) Concentration Increments
Traffic emission is one of the major contributors to urban PM(2.5), an important environmental health hazard. Estimating roadside PM(2.5) concentration increments (above background levels) due to vehicles would assist in understanding pedestrians’ actual exposures. This work combines PM(2.5) sensing...
Autores principales: | Wang, Wen-Cheng Vincent, Lin, Tai-Hung, Liu, Chun-Hu, Su, Chih-Wen, Lung, Shih-Chun Candice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506711/ https://www.ncbi.nlm.nih.gov/pubmed/32825023 http://dx.doi.org/10.3390/s20174679 |
Ejemplares similares
-
Demonstrating the Applicability of Smartwatches in PM(2.5) Health Impact Assessment
por: Tsou, Ming-Chien Mark, et al.
Publicado: (2021) -
Application of Machine Learning for the in-Field Correction of a PM(2.5) Low-Cost Sensor Network
por: Wang, Wen-Cheng Vincent, et al.
Publicado: (2020) -
Concurrent assessment of personal, indoor, and outdoor PM(2.5) and PM(1) levels and source contributions using novel low‐cost sensing devices
por: Lung, Shih‐Chun Candice, et al.
Publicado: (2020) -
Characterization and Cytotoxicity of PM(<0.2), PM(0.2–2.5) and PM(2.5–10) around MSWI in Shanghai, China
por: Cao, Lingling, et al.
Publicado: (2015) -
Effect of Urban Greening on Incremental PM(2.5) Concentration During Peak Hours
por: Wang, Shaogu, et al.
Publicado: (2020)