Cargando…
CNN Training with Twenty Samples for Crack Detection via Data Augmentation
The excellent generalization ability of deep learning methods, e.g., convolutional neural networks (CNNs), depends on a large amount of training data, which is difficult to obtain in industrial practices. Data augmentation is regarded commonly as an effective strategy to address this problem. In thi...
Autores principales: | Wang, Zirui, Yang, Jingjing, Jiang, Haonan, Fan, Xueling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506713/ https://www.ncbi.nlm.nih.gov/pubmed/32867223 http://dx.doi.org/10.3390/s20174849 |
Ejemplares similares
-
Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
por: Xu, Xiangyang, et al.
Publicado: (2022) -
Fast Attention CNN for Fine-Grained Crack Segmentation
por: Lee, Hyunnam, et al.
Publicado: (2023) -
Influence of Insufficient Dataset Augmentation on IoU and Detection Threshold in CNN Training for Object Detection on Aerial Images
por: Bożko, Arkadiusz, et al.
Publicado: (2022) -
Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures
por: Ali, Luqman, et al.
Publicado: (2021) -
Generative adversarial network based data augmentation for CNN based detection of Covid-19
por: Gulakala, Rutwik, et al.
Publicado: (2022)