Cargando…
Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network
Region proposal network (RPN) based trackers employ the classification and regression block to generate the proposals, the proposal that contains the highest similarity score is formulated to be the groundtruth candidate of next frame. However, region proposal network based trackers cannot make the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506765/ https://www.ncbi.nlm.nih.gov/pubmed/32858907 http://dx.doi.org/10.3390/s20174810 |
_version_ | 1783585089164148736 |
---|---|
author | Zhang, Ximing Luo, Shujuan Fan, Xuewu |
author_facet | Zhang, Ximing Luo, Shujuan Fan, Xuewu |
author_sort | Zhang, Ximing |
collection | PubMed |
description | Region proposal network (RPN) based trackers employ the classification and regression block to generate the proposals, the proposal that contains the highest similarity score is formulated to be the groundtruth candidate of next frame. However, region proposal network based trackers cannot make the best of the features from different convolutional layers, and the original loss function cannot alleviate the data imbalance issue of the training procedure. We propose the Spatial Cascaded Transformed RPN to combine the RPN and STN (spatial transformer network) together, in order to successfully obtain the proposals of high quality, which can simultaneously improves the robustness. The STN can transfer the spatial transformed features though different stages, which extends the spatial representation capability of such networks handling complex scenarios such as scale variation and affine transformation. We break the restriction though an easy samples penalization loss (shrinkage loss) instead of smooth L1 function. Moreover, we perform the multi-cue proposals re-ranking to guarantee the accuracy of the proposed tracker. We extensively prove the effectiveness of our proposed method on the ablation studies of the tracking datasets, which include OTB-2015 (Object Tracking Benchmark 2015), VOT-2018 (Visual Object Tracking 2018), LaSOT (Large Scale Single Object Tracking), TrackingNet (A Large-Scale Dataset and Benchmark for Object Tracking in the Wild) and UAV123 (UAV Tracking Dataset). |
format | Online Article Text |
id | pubmed-7506765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75067652020-09-26 Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network Zhang, Ximing Luo, Shujuan Fan, Xuewu Sensors (Basel) Article Region proposal network (RPN) based trackers employ the classification and regression block to generate the proposals, the proposal that contains the highest similarity score is formulated to be the groundtruth candidate of next frame. However, region proposal network based trackers cannot make the best of the features from different convolutional layers, and the original loss function cannot alleviate the data imbalance issue of the training procedure. We propose the Spatial Cascaded Transformed RPN to combine the RPN and STN (spatial transformer network) together, in order to successfully obtain the proposals of high quality, which can simultaneously improves the robustness. The STN can transfer the spatial transformed features though different stages, which extends the spatial representation capability of such networks handling complex scenarios such as scale variation and affine transformation. We break the restriction though an easy samples penalization loss (shrinkage loss) instead of smooth L1 function. Moreover, we perform the multi-cue proposals re-ranking to guarantee the accuracy of the proposed tracker. We extensively prove the effectiveness of our proposed method on the ablation studies of the tracking datasets, which include OTB-2015 (Object Tracking Benchmark 2015), VOT-2018 (Visual Object Tracking 2018), LaSOT (Large Scale Single Object Tracking), TrackingNet (A Large-Scale Dataset and Benchmark for Object Tracking in the Wild) and UAV123 (UAV Tracking Dataset). MDPI 2020-08-26 /pmc/articles/PMC7506765/ /pubmed/32858907 http://dx.doi.org/10.3390/s20174810 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Ximing Luo, Shujuan Fan, Xuewu Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title | Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title_full | Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title_fullStr | Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title_full_unstemmed | Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title_short | Proposal-Based Visual Tracking Using Spatial Cascaded Transformed Region Proposal Network |
title_sort | proposal-based visual tracking using spatial cascaded transformed region proposal network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506765/ https://www.ncbi.nlm.nih.gov/pubmed/32858907 http://dx.doi.org/10.3390/s20174810 |
work_keys_str_mv | AT zhangximing proposalbasedvisualtrackingusingspatialcascadedtransformedregionproposalnetwork AT luoshujuan proposalbasedvisualtrackingusingspatialcascadedtransformedregionproposalnetwork AT fanxuewu proposalbasedvisualtrackingusingspatialcascadedtransformedregionproposalnetwork |