Cargando…
The Use of Neural Networks and Genetic Algorithms to Control Low Rigidity Shafts Machining
The article presents an original machine-learning-based automated approach for controlling the process of machining of low-rigidity shafts using artificial intelligence methods. Three models of hybrid controllers based on different types of neural networks and genetic algorithms were developed. In t...
Autores principales: | Świć, Antoni, Wołos, Dariusz, Gola, Arkadiusz, Kłosowski, Grzegorz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506773/ https://www.ncbi.nlm.nih.gov/pubmed/32825114 http://dx.doi.org/10.3390/s20174683 |
Ejemplares similares
-
Control of Machining of Axisymmetric Low-Rigidity Parts
por: Świć, Antoni, et al.
Publicado: (2020) -
Influence of the Compliance of a Technological System on the Machining Accuracy of Low-Stiffness Shafts in the Grinding Process
por: Świć, Antoni, et al.
Publicado: (2023) -
An Investigation into the Effect of Electro-Contact Heating in the Machining of Low-Rigidity Thin-Walled Micro-Machine Parts
por: Świć, Antoni, et al.
Publicado: (2021) -
Technological Methods for Controlling the Elastic-Deformable State in Turning and Grinding Shafts of Low Stiffness
por: Świć, Antoni, et al.
Publicado: (2022) -
Theoretical and Experimental Identification of Frequency Characteristics and Control Signals of a Dynamic System in the Process of Turning
por: Świć, Antoni, et al.
Publicado: (2021)