Cargando…
Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery
Monitoring biomass of forages in experimental plots and livestock farms is a time-consuming, expensive, and biased task. Thus, non-destructive, accurate, precise, and quick phenotyping strategies for biomass yield are needed. To promote high-throughput phenotyping in forages, we propose and evaluate...
Autores principales: | Castro, Wellington, Marcato Junior, José, Polidoro, Caio, Osco, Lucas Prado, Gonçalves, Wesley, Rodrigues, Lucas, Santos, Mateus, Jank, Liana, Barrios, Sanzio, Valle, Cacilda, Simeão, Rosangela, Carromeu, Camilo, Silveira, Eloise, Jorge, Lúcio André de Castro, Matsubara, Edson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506807/ https://www.ncbi.nlm.nih.gov/pubmed/32858803 http://dx.doi.org/10.3390/s20174802 |
Ejemplares similares
-
Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing
por: de Oliveira, Gabriel Silva, et al.
Publicado: (2021) -
The estimation of crop emergence in potatoes by UAV RGB imagery
por: Li, Bo, et al.
Publicado: (2019) -
UAV-Based RGB Imagery for Hokkaido Pumpkin (Cucurbita max.) Detection and Yield Estimation
por: Wittstruck, Lucas, et al.
Publicado: (2020) -
A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses
por: Martins, Felipe Bitencourt, et al.
Publicado: (2021) -
Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery
por: Li, Jie, et al.
Publicado: (2023)