Cargando…

Establishment of the Complete Closed Mesh Model of Rail-Surface Scratch Data for Online Repair

Rail surface scratching occurs with increasing frequency, seriously threatening the safety of vehicles and humans. Online repair of rail-surface scratches on damaged rails with scratch depths >1 mm is of increased importance, because direct rail-replacement has the disadvantages of long operation...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yanbin, Huang, Lulu, Liu, Yingbin, Liu, Jun, Wang, Guoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506854/
https://www.ncbi.nlm.nih.gov/pubmed/32825753
http://dx.doi.org/10.3390/s20174736
Descripción
Sumario:Rail surface scratching occurs with increasing frequency, seriously threatening the safety of vehicles and humans. Online repair of rail-surface scratches on damaged rails with scratch depths >1 mm is of increased importance, because direct rail-replacement has the disadvantages of long operation time, high manpower and high material costs. Advanced online repair of rail-surface scratch using three-dimensional (3D) metal printing technology such as laser cladding has become an increasing trend, desperately demanding a solution for the fast and precise establishment of a complete closed mesh model of rail-surface scratch data. However, there have only been limited studies on the topic so far. In this paper, the complete closed mesh model is well established based on a novel triangulation algorithm relying on the topological features of the point-cloud model (PCM) of scratch-data, which is obtained by implementing a scratch-data-computation process following a rail-geometric-feature-fused algorithm of random sample consensus (RANSAC) performed on the full rail-surface PCM constructed by 3D laser vision. The proposed method is universal for all types of normal-speed rails in China. Experimental results show that the proposed method can accurately acquire the complete closed mesh models of scratch data of one meter of 50 Kg/m-rails within 1 min.