Cargando…
Multi-Modality Emotion Recognition Model with GAT-Based Multi-Head Inter-Modality Attention
Emotion recognition has been gaining attention in recent years due to its applications on artificial agents. To achieve a good performance with this task, much research has been conducted on the multi-modality emotion recognition model for leveraging the different strengths of each modality. However...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506856/ https://www.ncbi.nlm.nih.gov/pubmed/32872511 http://dx.doi.org/10.3390/s20174894 |
Sumario: | Emotion recognition has been gaining attention in recent years due to its applications on artificial agents. To achieve a good performance with this task, much research has been conducted on the multi-modality emotion recognition model for leveraging the different strengths of each modality. However, a research question remains: what exactly is the most appropriate way to fuse the information from different modalities? In this paper, we proposed audio sample augmentation and an emotion-oriented encoder-decoder to improve the performance of emotion recognition and discussed an inter-modality, decision-level fusion method based on a graph attention network (GAT). Compared to the baseline, our model improved the weighted average F1-scores from 64.18 to 68.31% and the weighted average accuracy from 65.25 to 69.88%. |
---|