Cargando…
Minimum Eigenvector Collaborative Representation Discriminant Projection for Feature Extraction
High-dimensional signals, such as image signals and audio signals, usually have a sparse or low-dimensional manifold structure, which can be projected into a low-dimensional subspace to improve the efficiency and effectiveness of data processing. In this paper, we propose a linear dimensionality red...
Autores principales: | Hu, Haoshuang, Feng, Da-Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506857/ https://www.ncbi.nlm.nih.gov/pubmed/32847071 http://dx.doi.org/10.3390/s20174778 |
Ejemplares similares
-
A new strategy for directly calculating the minimum eigenvector of matrices without diagonalization
por: Pan, Wei, et al.
Publicado: (2020) -
James–Stein for the leading eigenvector
por: Goldberg, Lisa R., et al.
Publicado: (2023) -
Sets of eigenvectors for volumes of revolution
por: Van Bladel, J
Publicado: (1959) -
Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors
por: Chen, Xiang, et al.
Publicado: (2018) -
Distinct types of eigenvector localization in networks
por: Pastor-Satorras, Romualdo, et al.
Publicado: (2016)