Cargando…
Underwater Hyperspectral Imaging Technology and Its Applications for Detecting and Mapping the Seafloor: A Review
Common methods of ocean remote sensing and seafloor surveying are mainly carried out by airborne and spaceborne hyperspectral imagers. However, the water column hinders the propagation of sunlight to deeper areas, thus limiting the scope of observation. As an emerging technology, underwater hyperspe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506868/ https://www.ncbi.nlm.nih.gov/pubmed/32887344 http://dx.doi.org/10.3390/s20174962 |
Sumario: | Common methods of ocean remote sensing and seafloor surveying are mainly carried out by airborne and spaceborne hyperspectral imagers. However, the water column hinders the propagation of sunlight to deeper areas, thus limiting the scope of observation. As an emerging technology, underwater hyperspectral imaging (UHI) is an extension of hyperspectral imaging technology in air conditions, and is undergoing rapid development for applications in shallow and deep-sea environments. It is a close-range, high-resolution approach for detecting and mapping the seafloor. In this paper, we focus on the concepts of UHI technology, covering imaging systems and the correction methods of eliminating the water column’s influence. The current applications of UHI, such as deep-sea mineral exploration, benthic habitat mapping, and underwater archaeology, are highlighted to show the potential of this technology. This review can provide an introduction and overview for those working in the field and offer a reference for those searching for literature on UHI technology. |
---|