Cargando…
Nonlinear Feature Extraction Through Manifold Learning in an Electronic Tongue Classification Task
A nonlinear feature extraction-based approach using manifold learning algorithms is developed in order to improve the classification accuracy in an electronic tongue sensor array. The developed signal processing methodology is composed of four stages: data unfolding, scaling, feature extraction, and...
Autores principales: | Leon-Medina, Jersson X., Anaya, Maribel, Pozo, Francesc, Tibaduiza, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506882/ https://www.ncbi.nlm.nih.gov/pubmed/32867066 http://dx.doi.org/10.3390/s20174834 |
Ejemplares similares
-
New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification
por: Leon-Medina, Jersson X., et al.
Publicado: (2023) -
Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
por: Leon-Medina, Jersson X., et al.
Publicado: (2021) -
A Sensor Data Fusion System Based on k-Nearest Neighbor Pattern Classification for Structural Health Monitoring Applications
por: Vitola, Jaime, et al.
Publicado: (2017) -
Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes
por: Vitola, Jaime, et al.
Publicado: (2017) -
Attention-Based Deep Recurrent Neural Network to Forecast the Temperature Behavior of an Electric Arc Furnace Side-Wall
por: Godoy-Rojas, Diego F., et al.
Publicado: (2022)