Cargando…
The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification
The common spatial pattern (CSP) is a very effective feature extraction method in motor imagery based brain computer interface (BCI), but its performance depends on the selection of the optimal frequency band. Although a lot of research works have been proposed to improve CSP, most of these works ha...
Autores principales: | Zhang, Shaorong, Zhu, Zhibin, Zhang, Benxin, Feng, Bao, Yu, Tianyou, Li, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506901/ https://www.ncbi.nlm.nih.gov/pubmed/32842635 http://dx.doi.org/10.3390/s20174749 |
Ejemplares similares
-
Cauchy non-convex sparse feature selection method for the high-dimensional small-sample problem in motor imagery EEG decoding
por: Zhang, Shaorong, et al.
Publicado: (2023) -
Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification
por: Hu, Hai, et al.
Publicado: (2022) -
EEG feature comparison and classification of simple and compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2013) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Comparison of EEG-Features and Classification Methods for Motor Imagery in Patients with Disorders of Consciousness
por: Höller, Yvonne, et al.
Publicado: (2013)