Cargando…
Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification
Relying on large scale labeled datasets, deep learning has achieved good performance in image classification tasks. In agricultural and biological engineering, image annotation is time-consuming and expensive. It also requires annotators to have technical skills in specific areas. Obtaining the grou...
Autores principales: | Shi, Fangyu, Wang, Zhaodi, Hu, Menghan, Zhai, Guangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506905/ https://www.ncbi.nlm.nih.gov/pubmed/32887391 http://dx.doi.org/10.3390/s20174975 |
Ejemplares similares
-
Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data
por: Wang, Zhaodi, et al.
Publicado: (2018) -
Identification of Apple Varieties Using a Multichannel Hyperspectral Imaging System
por: Huang, Yuping, et al.
Publicado: (2020) -
Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries
por: Md Noor, Siti Salwa, et al.
Publicado: (2017) -
Uncertainty Assessment of Hyperspectral Image Classification: Deep Learning vs. Random Forest
por: Shadman Roodposhti, Majid, et al.
Publicado: (2019) -
Hyperspectral Image Classification Model Using Squeeze and Excitation Network with Deep Learning
por: T, Rajendran, et al.
Publicado: (2022)