Cargando…
A Multiscale Recognition Method for the Optimization of Traffic Signs Using GMM and Category Quality Focal Loss
Effective traffic sign recognition algorithms can assist drivers or automatic driving systems in detecting and recognizing traffic signs in real-time. This paper proposes a multiscale recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and Category Quality Focal Loss (CQFL...
Autores principales: | Gao, Mingyu, Chen, Chao, Shi, Jie, Lai, Chun Sing, Yang, Yuxiang, Dong, Zhekang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506910/ https://www.ncbi.nlm.nih.gov/pubmed/32867246 http://dx.doi.org/10.3390/s20174850 |
Ejemplares similares
-
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
por: Wang, Yongjie, et al.
Publicado: (2022) -
Yolo-Based Traffic Sign Recognition Algorithm
por: Li, Ming, et al.
Publicado: (2022) -
Hierarchical Novelty Detection for Traffic Sign Recognition
por: Ruiz, Idoia, et al.
Publicado: (2022) -
Traffic Sign Recognition Based on the YOLOv3 Algorithm
por: Gong, Chunpeng, et al.
Publicado: (2022) -
Recent Advances in Traffic Sign Recognition: Approaches and Datasets
por: Lim, Xin Roy, et al.
Publicado: (2023)