Cargando…
A Deep Learning Approach for Estimating Traffic Density Using Data Obtained from Connected and Autonomous Probes
The focus of this research is on the estimation of traffic density from data obtained from Connected and Autonomous Probes (CAPs). CAPs pose an advantage over expensive and invasive infrastructure such as loop detectors. CAPs maneuver their driving trajectories, sensing the presence of adjacent vehi...
Autores principales: | Nam, Daisik, Lavanya, Riju, Jayakrishnan, R., Yang, Inchul, Jeon, Woo Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506926/ https://www.ncbi.nlm.nih.gov/pubmed/32858983 http://dx.doi.org/10.3390/s20174824 |
Ejemplares similares
-
Connected Traffic Data Ontology (CTDO) for Intelligent Urban Traffic Systems Focused on Connected (Semi) Autonomous Vehicles
por: Viktorović, Miloš, et al.
Publicado: (2020) -
Recent Trends on IoT Systems for Traffic Monitoring and for Autonomous and Connected Vehicles
por: Saponara, Sergio, et al.
Publicado: (2021) -
Estimation of Traffic Stream Density Using Connected Vehicle Data: Linear and Nonlinear Filtering Approaches
por: Aljamal, Mohammad A., et al.
Publicado: (2020) -
Optimizing Traffic Engineering for Resilient Services in NFV-Based Connected Autonomous Vehicles
por: Pham, Tuan-Minh, et al.
Publicado: (2021) -
TAKEN: A Traffic Knowledge-Based Navigation System for Connected and Autonomous Vehicles
por: Kamath B, Nikhil, et al.
Publicado: (2023)