Cargando…

A Non-Linear Temperature Compensation Model for Improving the Measurement Accuracy of an Inductive Proximity Sensor and Its Application-Specific Integrated Circuit Implementation

The non-linear characteristic of a non-contacting Inductive Proximity Sensor (IPS) with the temperature affects the computation accuracy when measuring the target distance in real time. The linear model based method for distance estimation shows a large deviation at a low temperature. Accordingly, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li, Tao, Hui-Bin, Dong, Hang, Shao, Zhi-Biao, Wang, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506972/
https://www.ncbi.nlm.nih.gov/pubmed/32899388
http://dx.doi.org/10.3390/s20175010
Descripción
Sumario:The non-linear characteristic of a non-contacting Inductive Proximity Sensor (IPS) with the temperature affects the computation accuracy when measuring the target distance in real time. The linear model based method for distance estimation shows a large deviation at a low temperature. Accordingly, this paper presents a non-linear measurement model, which computes the target distance accurately in real time within a wide temperature range from [Formula: see text] to [Formula: see text]. By revisiting the temperature effect on the IPS system, this paper considers the non-linear characteristic of the IPS measurement system due to the change of temperature. The proposed model adopts a non-linear polynomial algorithm rather than the simple linear Look-Up Table (LUT) method, which provides more accurate distance estimation compared to the previous work. The introduced model is fabricated in a 0.18 [Formula: see text] m Complementary Metal Oxide Semiconductor (CMOS) process and packaged in a CQFN40. For the most commonly used sensing distance of 4 mm, the computed distance deviation of the Application-Specific Integrated Circuit (ASIC) chips falls within the range of [Formula: see text] mm. According to the test results of the ASIC chips, this non-linear temperature compensation model successfully achieves real-time and high-accuracy computation within a wide temperature range with low hardware resource consumption.