Cargando…
An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features
The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models...
Autores principales: | Shen, Huaming, Ran, Feng, Xu, Meihua, Guez, Allon, Li, Ang, Guo, Aiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506989/ https://www.ncbi.nlm.nih.gov/pubmed/32825024 http://dx.doi.org/10.3390/s20174677 |
Ejemplares similares
-
ESSENCE Features for 2019
por: Loschen, Wayne
Publicado: (2019) -
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study
por: Najdi, Shirin, et al.
Publicado: (2017) -
Fast Convolutional Method for Automatic Sleep Stage Classification
por: Yulita, Intan Nurma, et al.
Publicado: (2018) -
Automatic Sleep Staging Algorithm Based on Time Attention Mechanism
por: Feng, Li-Xiao, et al.
Publicado: (2021) -
Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
Publicado: (2018)